tween the helical and random coil forms of ribonuclease that the helical form is relatively less stable in water than it is in deuterium oxide. Since the helical form presumably owes most of its stability to internal H-bonding, this result indicates less extensive internal H-bonding for the hydrogen compound in water. However, this protein transformation is relatively more complex than the previous example and interpretation is correspondingly more difficult.

Very little definite information is available on the role of the solvent in establishing the observed ratios of relative H-bonding. General zero-point energy arguments lead to the prediction that for isolated gaseous molecules internal hydrogen bonding by deuterium would be greater than that by hydrogen. In agreement with this Potter, Bender and Ritter²³ find the heat of dimerization of gaseous acetic acid- d_4 to be 300 calories greater than that of ordinary acetic acid and, at temperatures below about 140°, this leads to greater dimerization of the deuterium compound. However, there is also a measurable entropy difference for the two dimerizations so that zero-point energy considerations do not tell the whole story.

We know of no measurements of relative internal H-bonding in the gas state. But tentatively we can assume that, as with acetic acid dimerization, the bonding by deuterium will be slightly stronger. The implication of the present work then is that the H-bonding of the *solvent* deuterium oxide can be enough greater than that of water to reverse the normal prediction for internal H-bonding. Some direct studies of this proposal are in progress.

(28) A. E. Potter, Jr., P. Bender and H. L. Ritter, J. Phys. Chem., 59, 250 (1955).

ITHACA, N. Y.

[CONTRIBUTION FROM THE LOW TEMPERATURE LABORATORY, DEPARTMENTS OF CHEMISTRY AND CHEMICAL ENGINEERING UNIVERSITY OF CALIFORNIA, BERKELEY]

Phosphoryl Chloride. Entropy. Low Temperature Heat Capacity. Heats of Fusion and Vaporization. Vapor Pressure¹

BY J. B. OTT AND W. F. GIAUQUE

Received September 15, 1959

The heat capacity of phosphoryl chloride has been measured from 13 to 304° K. The heat of fusion at the triple point, 274.33° K., was determined as 3132 cal. mole⁻¹. The heat of vaporization at 298.15° K. and a pressure of 3.092 int. cm. was found to be 9220 cal. mole⁻¹. The calorimetric data were used to calculate the entropy of the ideal gas at 1 atm. and 298.15° K. as 77.75 gibbs mole⁻¹. A selected assignment of the fundamental frequencies of POCl₃ was used to calculate a value of 77.77 gibbs mole⁻¹.

This paper describes a low temperature calorimetric investigation of phosphoryl chloride, POCl₃, for the purpose of determining its entropy. This molecule is a somewhat unsymmetrical tetrahedron, and while it was expected that the crystal would attain perfect order at low temperatures, there was at least a small possibility of the type of disorder found² in perchloryl fluoride, ClO₃F.

Calorimetric Apparatus and Temperature Scale.—The measurements were made in Gold Calorimeter V. This designation is used for the rebuilt calorimeter IVA.² The calorimeter is similar to the one described by Giauque and Egan.³ The bottom, in which a welding crack had developed, was replaced, and a new gold resistance thermometer-heater was wound on the outside surface. The calorimeter weighed 453.2 g. before the resistance thermometer was added. The capacity to the top of the small platinum access tube was 135.37 cm.⁸ at 20°. The platinum tube was 1.4 cm. long, 0.24 cm. i.d. The standard thermocouple was attached by Busey and Giauque.⁴

The standard copper-constant n thermocouple No. 102 was compared with the triple $(13.94^{\circ} \text{ K.})$ and boiling $(20.36^{\circ} \text{ K.})$ points of hydrogen, and the triple $(63.15^{\circ} \text{ K.})$ and boiling $(77.34^{\circ} \text{ K.})$ points of nitrogen. Appropriate corrections were made for the deviations. 0° was taken as $273.15^{\circ} \text{ K.}$

Sample of Phosphoryl Chloride.—Reagent grade Baker and Adamson phosphoryl chloride was selected as a starting material. The label specified 0.01% sulfate and 0.001%iron. It probably would also contain some hydrogen chloride and phosphoric acid from hydrolysis with moisture. This material was put in a vacuum jacketed distillation column and refluxed for two days. Air was removed by pumping a small amount of the material through a capillary during the initial refluxing. The material remaining was distilled at a reflux ratio of 125:1. Of 400 cc. distilled, the central 150 cc. fraction was used for the calorimetric measurements. The column has been described by Koehler and Giauque.² The condensation coil at the top was maintained at 20°. This held the distillation pressure of POCl₃ inside the calorimeter at about 2.5 cm.

Premelting heat capacity measurements indicated that the material contained 0.02 mole % of liquid soluble-solid insoluble impurity.

Heat Capacity of Phosphoryl Chloride.—The heat capacities were measured in the usual manner. 202.187 g. corrected to *vacuo* were distilled into the calorimeter. The molecular weight was taken as 153.346. One atmosphere of helium was added at 10° to purge the filling tube and to essentially prevent later diffusion into it. The helium also provided good heat transfer within the calorimeter. One defined calorie was taken as 4.1840 absolute joules. Two series of measurements were made on the solid. The resistance thermometer-heater showed evidence of strain for about 50° below the melting point. The standard thermocouple was used for temperature observations in this region. The data are given in Table I. The values are

⁽¹⁾ This work was supported in part by the National Science Foundation.

⁽²⁾ J. K. Koehler and W. F. Giauque, THIS JOURNAL, 80, 2659 (1958).

⁽³⁾ W. F. Giauque and C. J. Egan, J. Chem. Phys., 5, 45 (1937).
(4) R. H. Busey and W. F. Giauque, THIS JOURNAL, 74, 4443 (1952).

TABLE I

Observed	НЕАТ САН	PACITY	OF PHOSP		CHLORIDE ^a
<i>T</i> , ⁰K.	C _p , gibbs mole ⁻¹	Series	Т, ⁰К.	Cp, gibb mole -1	s Series
14.07	1.999	1	182.48	22.20	I
15.63	2.562	Ī	189.95	22.64	Ī
17.81	3.328	Ι	197.47	23.13	Ι
20.57	4.410	Ι	205.02	23.58	Ι
23.69	5.350	Ι	212.64	24.02	Ι
28.24	6.601	I	220.28	24.48	Ι
33.14	7.759	Ι	222.43	24.62^{b}	II
37.50	8.626	Ι	227.97	24.95'	Ι
42.07	9.351	Ι	229.14	25.00^{b}	II
47.10	10.09	Ι	235.82	25.43^{b}	Ι
52.67	10.82	Ι	236.30	25.39^{b}	II
58.31	11.52	Ι	243.56	25.83^{b}	II
64.15	12.23	Ι	243.64	25.93^{b}	Ι
70.35	12.95	Ι	250.96	26.22'	II
77.03	13.59	Ι	251.11	26.37^{b}	Ι
84.34	14.34	Ι	256.73	26.60%	Ι
91.69	15.06	Ι	258.32	$26.65^{\prime\prime}$	II
99.08	15.76	I	261.41	27.26°	Ι
106.56	16.44	I	264.83	27.33^{b}	۶ II
114.08	17.11	I	266.02	27.58^{b}	
121.74	17.75	Ι	270.38	30.61°	d II
129.49	18.35	Ι	274.33	M.p.	
137.09	18.95	Ι	280.85	33.01	III
144.65	19.51	Ι	284.90	33.00	$_{\rm IV}$
152.44	20.10	I	288.45	33.06	III
160.18	20.67	I	292.69	33.06	IV
167.62	21.19	Ι	295.96	33.13	III
175.05	21.70	Ι	300.19	33.21	IV

^a Mol. wt. = 153.346. 1.3185 moles in calorimeter. ^b Temperature rise obtained from thermocouple. ^c $\Delta T = 5.726$ °K. ^d $\Delta T = 5.158$ °K. Both ^c and ^d used for impurity calculation.

given in gibbs mole^{-1.5} and the conversion to absolute temperature is 0°C. = 273.15°K. in all data given.

The Melting Point of Phosphoryl Chloride.— The triple point was determined as a function of the fraction X melted and the values extrapolated by means of a plot of T vs. 1/X. The measurements were made under the vapor pressure of POCl₃. The data are given in Table II together with the values of other observers.

TABLE II

TRIPLE POINT OF PHOSPHORYL CHLORIDE

% Meited	T, °K. resist. therm.	T, °K. thermocoup.			
20	274.268	274.259			
45	274.298	274.300			
75	274.311	274.316			
a T2 (074 00 1 0 059 7			

^a Extrapolated and accepted value = $274.33 \pm 0.05^{\circ}$ K. Values due to other observers are: $274.40, 6274.33, 7274.35^{\circ}$ K.⁸

Heat of Fusion of Phosphoryl Chloride.—Three determinations of the heat of fusion were made in the usual manner of starting energy input at a temperature somewhat below the melting point and ending it somewhat above. Correction was

(5) W. F. Giauque, E. W. Hornung, J. E. Kunzler and T. R. Rubin, THIS JOURNAL, 82, 62 (1960).

(6) P. Walden, Z. anorg. Chem., 68, 307 (1910).

(7) G. Oddo and A. Mannessier, Gazz. chim. ital., 42-II, 194 (1912).

(8) C. R. Witschonke, Anal. Chem., 26, 562 (1954).

TABLE III HEAT OF FUSION OF PHOSPHORYL CHLORIDE⁴

Temp. interv., °K.	Heat input, co rr.	Pre- melting	$\int C_{p} dT$	$\Delta H_{\text{fus.}},$ cal./mole
273.05-280.09	3334	19.7	223	3131
268.35-277.42	3391	2.2	263	3130
268.53 - 277.21	33 8 5	2.4	252	3135
^a M.p., 274.3	Average	3132 ± 3		

made for any premelting which had occurred before the starting temperature. The data are given in Table III.

Vapor Pressure of Phosphoryl Chloride.—It was necessary to have an accurate value of the vapor pressure at the temperature used for the calorimeter measurement of the heat of vaporization in order to calculate the entropy. Only a few points were measured in the range 280-298° K. because the apparatus, which was similar to that described by Giauque and Egan,³ did not permit observations above room temperature. The measurements were made with a Société Génévoise cathetometer, accurate to 0.001 cm., used as a comparison instrument against a standard meter bar. The data were compared with values obtained from a straight line plot of (ln $P + \Delta C_p/R \ln T$) vs. (1/T), where $\Delta C_p = C_p(g) - C_p(1) = 13.0$ gbs. mole⁻¹.

$$\frac{\mathrm{d}\ln P}{\mathrm{d}\left(1/T\right)} = -\frac{\left(\Delta H_{0} - \Delta C_{p}T\right)}{R\left(1 - \left(\frac{V_{1}P}{RT}\right)\right)}$$

 $\Delta H_{\text{vap.}} = \Delta H_0 - 13.0 T$, $V_1 = \text{molal volume of liquid, and the term <math>V_1 P/RT$ is almost completely negligible at the low pressures involved.

$$\frac{\mathrm{d}\left(\ln P + \frac{\Delta C_{\mathrm{p}}}{R}\ln T\right)}{\mathrm{d}(1/T)} = \frac{-\Delta H_{\mathrm{g}}}{R}$$

which may be evaluated from the calorimetric data. It was found that a systematic deviation in the vapor pressure values existed in a direction to indicate that a pressure of 0.026 cm. of inert gas was present. Previous measurements in this Laboratory have shown that it is extremely difficult to make vapor pressure measurements to a high percentage accuracy when the pressure is low, due to the great difficulty in completely removing inert gases. In the present case we made the rough assumption that the partial pressure of the inert gas remained constant over the small interval measured to obtain an approximate value of the inert gas pressure. The effect of the correction of 0.026 cm. on the final entropy value is only about 0.015 gbs. mole⁻¹.

The original and the corrected observations are given in Table IV along with deviations from the best straight line, with the calculated slope, through the data.

Heat of Vaporization of Phosphoryl Chloride.— The heat of vaporization was measured a little below 25° where the pressure is only about 3 cm. In order to stabilize the vaporization process, a capillary tube was calibrated so that the flow balanced the heat input when the effluent gas was completely condensed in liquid nitrogen. The condensation occurred in a weighing bulb, which could be attached to the capillary by means of a ground glass joint. Corrections were made for

					000		00.000	1		
TABLE IV			$220 \\ 230$	24.477	33.269	17.878	15.391			
VAPOR PRESSURE OF PHOSPHORYL CHLORIDE			$230 \\ 240$	$25.061 \\ 25.627$	$\begin{array}{c} 34.370\\ 35.449 \end{array}$	$18.572 \\ 19.252$	15.798 16.197			
T, °K resist	., . P	obsd. H	obsd., Po	obsd. – P caled.,	$240 \\ 250$	25.027 26.205	36.507	19.232 19.921	16.586	
therm	i. inte		P corr.	corr.	260	26.200 26.788	37.546	19.521 20.579	16.967	
280.12			1.155	+0.002	$200 \\ 270$	20.783 27.397	38.568	20.073 21.227	17.341	
285.1.			1.524	— .009	$270 \\ 273.15$	27.597 27.596	38.887	21.227 21.429	17.458	
289.96			2.017	+ .019	273.10 274.33	27.672	39.006	21.423 21.504	17.502(s)	
294.2			2.473	- .033	274.33	33.046	50.000 50.423	21.504 21.504	28.919(1)	
298.23			3.124	+ .019	280	33.001	51.099	21.001 22.096	29.003	
298.13	5	Calcd. $=$	3.092		200 290	33.040	52.257	23.117	29.140	
		T	X.7		298.15	33.169	53.174	23.926	29.248	
		TABLE		_	300	33.216	53.379	23.020 24.107	29.272	
HEAT OF	VAPORIZA			CHLORIDE AT	000	00,210			20.212	
		298.15°. Time ener			THERMOR	TABLE VIII THERMODYNAMIC PROPERTIES OF PHOSPHORYL CHLORIDE				
Moles va	aporiz.	input, min	ΔH	vap., cal./mole	IAEKMOL		s (in gibbs		AL CHLORIDE	
0.15	187	70		9219		GA		$-(F^0 - H_0^0)/$		
. 15	199	70		9222	Т, °К.	$C_{\mathfrak{p}^0}$	S0	T T	$(H^0 - H_0^0)/T$	
.157	723	70		9219	15	7.949	43.461	35.512	7.949	
		Avera	age value	9220 ± 5	20	7.950	45.747	37.798	7.949	
					25	7.957	47.522	39.572	7.950	
		TABLE	VI		30	7.984	48.975	41.022	7.953	
CALCULATI	ION OF TH	E ENTROPY	GIBBS/M	OLE) OF POCl ₃	35	8.048	50.209	42.248	7.961	
	FROM 1	THE CALORI	METRIC DAT	`A	40	8.161	51.291	43.313	7.978	
0-15°K., e	xtrap.			0.86	45	8.328	52.261	44.254	8.007	
15-274.33°	-			38.15	50	8.548	53.150	45.100	8.050	
Fusion, 313				11.42	55	8.812	53.976	45.869	8.107	
274.33 - 2		graph.		2.75	60	9.112	54.756	46.578	8.178	
Vaporizatio	on 9220/29	98.15		30.92	70	9.785	56.210	47.851	8.359	
-					80	10.508	57.563	48.981	8.582	
	-	as at 0.040	38 atm. an		90	11.241	58.844	50.007	8.837	
298.15°F				84.10	100	11.960	60.065	50.952	9.113	
$S_{\text{ideal}} - S_{\text{r}}$				0.01	110	12.654	61.238	51.834	9.404	
Compress.	from 0.040	068 to 1 atn	1.	-6.36	120	13.316	62.367	52.665	9.702	
Entropy of	Fideal gas	at 1 atm. ar	d 208 15°K	. 77.75 gbs./	130	13.946	63.459	53.454	10.005	
Endopy of	i lacar gab	at i atim. ti	u 200.10 H	mole	140	14.541	64.514	54.207	10.307	
				more	150	15.102	65.536	54.927	10.609	
		TABLE \	/II		160	15.630	66.528	55.621	10.907	
Thermody	NAMIC PR	OPERTIES OF	SOLID AN	D LIQUID PHOS-	170	16.125	67.490	56.292	11.198	
	PHORYL C	HLORIDE (in	ı gibbs mol	e ⁻¹)	180	16.590	68.425	56.940	11.485	
° <i>K</i> .	C •	C10	$-(F^0 -$		190	17.024	69.334	57.568	11.766	
	$C_{\mathfrak{p}^0}$	Sº	H_0)/T	$(H^0 - H_0^0)/T$	200	17.430	70.218	58.179	12.039	
15	2.308	0.857	0.220	0.637	210	17.813	71.078	58.773	12.305	
20	4.148	1.772	0.488	1.284	220	18.170	71.916	59.352	12.564	
25 20	5.740	2.882	0.854	2.028	230	18.503	72.731	59.916	12.815 12.059	
30 35	$7.038 \\ 8.150$	$\begin{array}{c}4.046\\5.217\end{array}$	1.289 1.767	2.757	240	18.815	73.523	60.465	13.058	
35 40	9.038	6.366	1.767 2.270	3.450 4.096	250 260	19.109	74.298	$61.003 \\ 61.530$	13.295	
$40 \\ 45$	9.038 9.784	7.474	$2.270 \\ 2.787$	4.687	$260 \\ 270$	19.385 19.644	$75.053 \\ 75.789$	$61.530 \\ 62.044$	$\frac{13.523}{13.745}$	
40 50	9.784 10.466	8.541	$\frac{2.787}{3.310}$	5.231	$270 \\ 273.15$	$19.044 \\ 19.723$	75.789 76.018	62.044 62.204	13.745 13.814	
55	10.400 11.112	9.569	3.832	5.737	273.13 274.33	19.723 19.752	76.018 76.104	62.264	13.840	
60	11.728	10.562	4.352	6.210	274.55 280	19.889	76.508	62.548	13.960	
00 70	11.723 12.877	10.302 12.459	5.376	7.083	280 290	20.120	70.308 77.210	63.041	13.900 14.169	
80	13.909	12.405 14.246	6.374	7.872	$290 \\ 298.15$	20.120 20.298	77,770	63.436	14.334	
90	13.305 14.895	15.941	7.344	8.597	298.10 300	20.298	77.896	63.525	14.371	
100	15.843	17.560	8.285	9.275	310	20.530 20.542	78.566	63.999	14.567	
110	16.753	17.000 19.113	9.199	9.914	320	20.342 20.736	73.000 79.221	64.465	14.756	
$110 \\ 120$	$10.703 \\ 17.604$	19.113 20.607	10.088	10.519	320 330	20.730 20.920	79.221 79.863	64.922	14.941	
130	17.004 18.387	20.007 22.048	10.000 10.953	11.095	340	20.920 21.096	79.803 80.490	65.371	15.119	
140	19.155	23.439	10.300 11.795	11.644	350 350	21.090 21.262	81.103	65.811	15.292	
150	19.914	26.405 24.787	11.735 12.617	12.170	360 360	$\frac{21.202}{21.419}$	81.105 81.705	66.245	15.292 15.460	
160	20.653	26.096	12.017 13.418	12.678	370	21.419 21.570	81.703	66.670	15.623	
170	20.003 21.353	27.369	14.202	13.167	380	21.570 21.713	82.233 82.871	67.089	15.782	
180	21.000 22.021	27.509	14.202 14.968	13.641	390	21.713 21.850	83.436	67.500	15.936	
190	22.659	29.816	15.718	14.098	400	21.000 21.980	83.992	67.907	16.085	
200	23.276	30.994	16.452	11.000 14.542	450	21.500 22.549	86.614	69.842	16.772	
210	23.879	32.144	17.173	14.971	500	23.007	89.015	71.641	17.374	
				. –						

heat leak and the effect of small changes of temperature on the residual material. Correction also was made for the fact that the volume previously filled with liquid became available for gas. The values for ΔH were corrected to 298.15°K. over the small temperature range. The values are given in Table V.

The Entropy of Phosphoryl Chloride from the Calorimetric Data.—The entropy was calculated in the usual manner by graphical integration and a Debye extrapolation. The data are summarized in Table VI.

The microwave data of Williams, Sheridan and Gordy,⁹ and the vibrational fundamentals as given by Ziomek, Piotrowsky and Walsh,^{10,11} were used to calculate a statistical value of the entropy of POCl₃ gas.

Williams, Sheridan and Gordy found it necessary to combine their data with the electron diffraction data of Brockway and Beach¹² in order to obtain the moment of inertia about the symmetry axis

 $I_1 = 422.3 \times 10^{-40} \text{ g. cm.}^2 \text{ molecule}^{-1}$

 $I_2 = 419.2 \times 10^{-40}$

 $I_3 = 578.7 \times 10^{-40}$

We have obtained the above values from a weighted average of the several isotopic species. $I_1 \neq I_2$ due to isotopic loss of symmetry.

(9) Q. Williams, J. Sheridan and W. Gordy, J. Chem. Phys., 20, 164 (1952).

(10) J. S. Ziomek, E. A. Piotrowsky and E. N. Walsh, Phys. Rev., 98, 243 (1955).

(11) Technical Report 3, Office of Ordnance Research, Contract No. DA-11-022-ORD-1281 Project TB2-0001 (OOR No. 842), submitted June 8, 1954.

(12) L. O. Brockway and J. Y. Beach, This Journal, 60, 1836 (1938).

Ziomek, Piotrowsky and Walsh calculate a value for the entropy at 298.16° K. as 77.38 gbs. mole⁻¹. This value must be in error since the experimental result, 77.75 gbs. mole⁻¹, is greater than the above value, whereas it must be equal or less than the value derived from quantum data. Ziomek, Piotrowsky and Walsh do not state which of the fundamentals were given a double weight. We have used their values for the fundamentals and the weights listed to bring the calorimetric and spectroscopic values into agreement. The fundamental frequencies in cm.⁻¹ are

$$\nu_1 = 1290, \nu_2 = 486, \nu_3 = 337, \nu_4 = 581(2),$$

$$\nu_5 = 267(2), \nu_6 = 193(2)$$

These give a value of 77.77 vs. the experimental value 77.75 gbs. mole⁻¹. These values do not include the contributions due to isotopic mixing or nuclear spin. The result of Ziomek, Piotrowsky and Walsh corresponds to a reversal of ν_3 and ν_5 with respect to the double weight.

The above data were used to calculate values for the thermodynamic properties of phosphoryl chloride gas. The thermodynamic properties for condensed phases and the gas are given in Tables VII and VIII, respectively.

We thank L. E. Murch for assistance with the experimental measurements, D. S. Thompson for assistance with some of the calculations and especially R. H. Valentine for much assistance throughout the entire research. We thank Professor W. D. Gwinn for consultation on the spectroscopic data of phosphoryl chloride.

BERKELEY, CALIFORNIA

[CONTRIBUTION FROM THE SCHOOL OF CHEMISTRY OF RUTGERS, THE STATE UNIVERSITY]

Counterion Binding by Polyelectrolytes. V. The Effect of Binding of Univalent Cations by Polyphosphates on the Intrinsic Viscosity¹

BY PHILIP D. ROSS AND ULRICH P. STRAUSS

RECEIVED AUGUST 7, 1959

The effect of alkali metal ions on the molecular dimensions of a long-chain polyphosphate has been determined by viscosity measurements at 0° in aqueous solutions maintained at 0.2 ionic strength with tetramethylammonium bromide. All alkali metal ions depress the intrinsic viscosity, but in different ways. It is shown that the intrinsic viscosity is not a unique function of either the degree of ionization of the polyphosphate or the degree of binding of the alkali metal ions. This result indicates the existence of specific solvent incompatibilities of site-bound ion-pairs. The previous explanation of the association of the cations with PO_3^- -groups on the cation concentration in terms of the molecular dimensions of the polymer chain has been confirmed.

One of the most characteristic and best known properties of polyelectrolytes is the strong dependence of their molecular dimensions on their degree of ionization.² More recently, phase separation and viscosity studies on long-chain poly-

(1) The contents of this paper are contained in a thesis to be submitted by P. D. Ross to the Graduate School of Rutgers, The State University, in partial fulfilment of the requirements for the degree of Doctor of Philosophy. This investigation was supported by a grant from the United States Atomic Energy Commission under Contract AT(30-1)1018.

(2) R. M. Fuoss and U. P. Strauss, J. Polymer Sci., 3, 246 (1948); Ann. N. Y. Acad. Sci., 51, 836 (1949). phosphates have shown that the solvent incompatibilities of site-bound $LiPO_3$ and $NaPO_3$ groups were different and that such differences had a pronounced effect, comparable to that of the degree of ionization, on the molecular dimensions of the polyelectrolyte.³ However, since the degree of binding of the Li⁺ and Na⁺ ions was not quantitatively known, the conclusions concerning the molecular dimensions were necessarily only qualitative. In the meantime, the binding of Li⁺,

(3) U. P. Strauss, D. Woodside and P. Wineman, J. Phys. Chem., 61 1353 (1957).